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SUMMARY 

Numerical solutions are presented for two-dimensional low Reynolds number flow in a rotating tank with 
stationary barriers. The boundary element method is employed, assuming straight panels and quadratic 
source distribution. The feasibility of repositioning the nodes as a way to minimize the error is explored. A 
stretching parameter places smaller elements near the re-entrant regions. Elementary error analysis shows 
uniform improvement in the solution with stretching. The changing eddy pattern for different numbers and 
sizes of the barriers is compared with experimental results. 
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INTRODUCTION 

The Navier-Stokes equations can be linearized in those fortuitous circumstances where the 
Reynolds number is very low. However, in many problems of engineering interest (for example, in 
lubrication) the solution of the linearized equations is not simple because of the complex geometry 
involved. In these situations the resulting biharmonic equation can be conveniently solved by the 
boundary element method (BEM).'-4 The advantages of the BEM are that the interior of the 
domain need not be discretized and discretization of a boundary of complex shape poses no 
additional difficulty. However, the discretization of the boundary requires special care when sharp 
corners are present on the boundary or the boundary conditions are discontinuous. Either of these 
would introduce a mathematical singularity in the v o r t i ~ i t y . ~ , ~  The presence of these singularities is 
detrimental to the quality of the solution. The quality of the BEM solution can be improved by 
inserting the proper singularity analytically and solving only the regular part n~mer i ca l ly .~ -~  

In this paper an attempt is made to improve the BEM solution by refining the grid near the 
singularities. The principle of grid refinement is based on some observations concerning the finite 
element method (FEM). It has been found7 that the accuracy and convergence of the FEM depend 
on the smoothness of the solution, where the smoothness indicates how many square integrable 
derivatives the solution has. Extending this idea to the BEM, we plan to refine the grid selectively 
near the singularities of the vorticity where the stream function is less smooth. The refinement 
could be achieved by the introduction of additional nodes or by an optimum arrangement of a fixed 
number of nodes. Here the second approach is used, where a higher accuracy is obtained by the 
same amount of computation. The process of reaching the optimum is iterative. At each stage the 
error in the solution is gauged and the changes are introduced accordingly. The BEM has a distinct 
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advantage over the FEM in gauging the error in the solution. Since the numerical solution in the 
BEM is expressed as integrals involving the suitable Green’s function, it satisfies the governing 
equation exactly within the domain; a comparison of the numerical solution with the specified 
conditions on the boundary provides an error measure. In other words, the more rigidly we enforce 
the boundary conditions, the closer we get to the exact solution. 

For demonstration purposes we consider the low Reynolds number flow of an incompressible 
fluid in a rotating tank with stationary barriers. This problem exemplifies certain com.putationa1 
difficulties associated with solving the biharmonic equation in domains of complex geometry. The 
fluid turns around sharp edges and corners and shows a changing eddy pattern when the height of 
the barriers is changed. The nature of the flow field has been found experimentally* to be sensitive 
to the geometry; that is, small changes in the height of the barriers can dramatically alter the nature 
of the entire flow field. This sensitivity demands that errors accrued near the re-entrant regions 
and in the corners where the boundary conditions are discontinuous should be monitored 
carefully. In certain cases the integrity of the numerical solution can be impaired if these errors 
are not minimized. The method of grid repositioning, in which the size of the elements is reduced 
in regions of large error, is shown to be an effective method not only of reducing errors in the 
corners and re-entrant regions but also of achieving global reductions in the error. 

MODEL PROBLEM 

As the model problem, consider the case with four tabs (barriers) as shown in Figure 1. The rotating 
tank is designated as the boundary rl and the four tabs are designated as the boundary r2. 

The governing equations can be written in terms of a suitably non-dimensionalized stream 
function $ as 

V 4 $ ( x , y ) = 0  in a, (1) 

i 

Figure 1. Problem geometry 
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with the boundary conditions 

a* 
- ( x , y ) =  an  - 1 on rl, 
a* - ( x , y ) = O  on Tz, an 

where n is the co-ordinate along the unit outward normal n to the boundary of domain SZ. 
Two categories of boundary element formulation can be found in the literature: the direct 

f ~ r r n u l a t i o n ~ ~ ~  and the indirect f~rmulation.',~ Here the second approach is taken and the solution 
of equation (1) is written as 

$(P) = M P )  + 8(P), (3) 
where and 8 are harmonic functions, p = ( x ,  y )  is a point in the domain and r2 = x 2  + y2. The 
functions Cp and 0 may be expressed as boundary integrals representing simple source distributions 
along dSZ = rl + T2. That is, if q is a point on the boundary aQ and s is the parameter of arc 
length along the boundary, then 

(4) 

where 

C(P, 4) = In IP - ql. (6) 
Inserting equations (3)-(5) into equations (2) yields the following integral equations for the source 
strengths a(q) and p(q): 

n n 

where 

The prime on G denotes the derivative along the outward normal to the boundary at the point p. 

NUMERICAL SOLUTION 

In order to solve equations (7)-(9) for o(q) and p(q), the boundary BSZ is approximated by N 
straight boundary elements (panels). Then the integrals in equations (7) and (8) become 
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jaaj ~ ( p 7  qj)oj(qj)ds(qj), (10) 
j= 1 

j =  f 1 j ~ * j C ' ( p , q j ) ~ j ( q j ) d s ( 4 1 )  (1 1)  

with similar expressions containing pj(qj), where 80, represents the jth panel. If the variations of oj  
and pj are assumed quadratic on each panel, then they can be expressed in terms of appropriate 
shape functions9 and values of oj and pj at three points on the panel; that is7 

3 

aj(qj) = 1 Si(qj)aij, (12) 

Pj(qj) = 1 Si(qj)Pij. (13) 

i =  1 

3 

i = l  

The general form of the shape function is 

where Cmi are known constants. The stream function and its derivative along the outwar'd normal 
at a collocation point P k  on the boundary can now be written as 

N 3  N 1  

where 

The ultimate unknowns are then the source strengths aij and pi> If there are 2M unknowns, then 
these are solved by writing equations (15) and (16) at M collocation points. On each panel the two 
end points and the midpoint are taken as the collocation and the source points. 

The integrations can be carried out numerically' or analytically.'O~ll In the present study 
analytical integration is possible because straight panels have been chosen, and analytical 
integration is computationally economical because it was found that the logarithmic kernel 
requires smaller subdivisions for numerical integration when the field point is close to the source 
panel. Since published expressions" for the six integrals involved in Ukij and Vkij have 
typographical errors, they have been included in the Appendix. 

ERROR ANALYSIS 

If a norm is defined as 
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then the boundary element error can be expressed as 

where $ represents the exact solution, $ h  the boundary element solution, and h = ( h , , h , , .  . . , hk) 
represents the partitioning of the boundary defined by the element lengths. Since $ is unknown 
within Q, a second error norm is defined in terms of specified boundary data: 

where 

It is shown by Ingber and Mitra’, that 

where C is a constant independent of the discretization. Thus minimizing the error in the boundary 
norm (EB) will provide the best bound on the error in the entire domain. Since the boundary error 
norm is a measurable quantity, it can be minimized through numerical experiments by changing 
the size of the elements. Ingber and Mitra suggested a method for automatic optimization of the 
discretization.’, In this paper the results of the numerical experiments mentioned above are given. 
Re-discretization is not an arbitrary procedure. The error norm for each panel provides clues for 
this process, especially for a boundary with sharp edges and corners or where the specified 
boundary data has discontinuities. 

In the present problem the error norm EB was found to be much larger than average for panels 
near the re-entrant edges and the corners where the tank meets the tabs. Rapid changes in the 
dependent variable near singularities resulted in oscillatory solutions for the source strengths, 
giving rise to large errors in these regions. Problems of this nature have been previously 
investigated by Bernal and Whiteman6 and Kelmanson.’ These investigators combined an 
analytic representation of the singularity with their numerical methods. Additional collocation 
points were incorporated to determine the additional unknown constants associated with the 
analytical singular parts. The present approach is perhaps more general in that it is not dependent 
on the nature of the singularity and will also work for boundaries that approximate corners or re- 
entrant regions, such as the leading edge of a thin aerofoil. 

In the present method, when a large boundary error is observed in a region, the boundary 
conditions are enforced more rigidly by employing smaller elements in that region while 
maintaining the same total number of elements. This has been done by using a stretching 
parameter (S < 1). The largest elements are placed near the centre of the barrier or the tank in each 
sector. The sizes of the elements are shortened, using the stretching parameter, according to a 
geometric progression as a corner or edge is approached. 

OPTIMIZATION 

In Figure 2 the discretization with stretching ( S ,  on tank and S ,  on barrier) for the top half of the 
tank with two barriers is shown. The stretching on the tank and barriers can be independently 
selected. The optimization process has been started with both stretchings being at unity. Only the 
stretching on the tab was then reduced until a minimum in the error norm was found. Keeping 
the stretching on the tab constant at the value corresponding to this minimum, the stretching 
on the tank was reduced. The process was continued until a ‘global minimum’ was reached. The 
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Figure 2. Use of stretching parameters for two barriers 
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Figure 3. Optimization for two barriers with h/D = 0.2 

results of this optimization process are presented for one case with two barriers where the barrier 
height non-dimensionalized by the tank diameter is 0.2. Each half of the tank is divided into 16 
panels, and six panels are placed on each barrier. The path leading to the ‘optimum’ is shown 
in Figure 3 together with the value of EB for several stretching combinations. However, the 
optimum is restricted to the chosen goemetric progression for the size of the elements. Though 
more general variation in size may provide a better solution, the basic advantages of the method 
can be seen quantitatively. The error norm has been calculated for each panel and then squared 
and summed to get the total error. For each panel the norm was calculated by a one-point 
integration formula using the error at a point halfway between two collocation points where 
the error is expected to be maximum. The zigzag path leading to the optimum suggests that the 
optimum is related non-linearly with the two stretchings. However, independent variation of 
the stretchings leads to the correct end result. In Figures 4 and 5 the error in the Neumann 
condition on each panel is plotted for the uniform as well as the optimum discretization. The 
curved boundary is straightened out for convenience in plotting. When shorter elements were 
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Figure 5. Error in Neumann condition on the tank 

placed near the edges, the lengths of elements elsewhere were made larger in order to keep the total 
number of elements fixed. Even so, the error plot shows a uniform reduction in error spikes. The 
sharp error spikes near the corner (within a circle of radius 0.01 centred at the corner) where the 
tank meets the barrier appear for two reasons. First the boundary conditions are inconsistent ‘at’ 
the corner, because the corner belongs to the stationary barrier as well as the moving tank. The 
second reason, which is purely procedural, is that the direction of the normal to the surface cannot 
be correctly specified at this point. Kelmanson5 has given the nature of the stream function near 
such corners but has not shown how the Neumann error improved when the analytical nature of 
the solution is built into the numerical solution. However, the value of the function itself converged 
quickly through Kelmanson’s modification.’ Similar improvements have been observed through 
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stretching, as shown in Figure 6 where the value of the stream function (Dirichlet error) is plotted 
along the barrier. 

As the stretching parameter is reduced, the condition number of the coefficient matrix increases. 
In all cases presented in this paper the condition number has always been less than 10’. For a 
condition number of this order, double-precision arithmetic is essential. 

The efficiency of the optimization process can be demonstrated by a comparison of computation 
costs between uniform grids having a large number of elements and the optimal grid. For the 
example case of the tank with two barriers and h/D = 0.2, in which half of the tank is divided into 16 
panels and the tab is divided into six panels, each iteration took 9 CPU seconds on a VAXJVMS 
system. As shown in Figure 3,12 iterations were needed to obtain the optimal grid, and therefore a 
total of 108 CPU seconds were expended. The resulting boundary error for the optimal grid was 
given by E B  = 0.019 (see equation (21)). By using a uniform grid but increasing the number of 
panels on the tank and tab proportionally, it was determined for a discretization with 80 panels per 
half-tank and 30 panels per tab that a total of 712 CPU seconds were expended, resulting in a 
boundary error EB = 0.174. It is thus clear that the optimal grid far outperforms the uniform grid 
in terms of cost and accuracy. 

RESULTS 

The improvement in the interior that can be achieved by stretching is shown quantitatively in 
Figure 7. The location of the stagnation point in a tank with two barriers is plotted against the 
barrier height. The details of the grid are given in Table I. When the height of the barrier is small, 
h/D = 0.1, the solution with a uniform grid does not show any stagnation point. The stagnation 
point can only by resolved by optimizing the element lengths. When the height of the barrier is 
increased, the flow becomes compartmentalized in the two halves of the tank. Though the 
singularity continues to exist at the sharp edge, its effect gets diminished. As a result the 
optimization process loses it significance. For h/D = 0.3 and h/D = 0.4 the results for uniform and 
optimum grids are almost identical. 
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Table 1 

Barriers h/D Panelsfiarrier Panels/sector of tank S, s2 
2 0.1 6 24 1-0 0.05 

0.2 12 24 1.0 0 3  
0.3 18 24 1.0 0.45 
0.4 24 24 1.0 0.55 

4 0 2  6 6 1.0 0.3 
0.25 6 6 1.0 0 2  
0.3 6 6 1.0 0.2 

The stream function for several cases with four barriers is also determined. In all the cases the 
optimum stretching combination (see Table I) was found. The flow with one central stagnation 
point is shown in Figure 8(a); in Figure 8(b) the flow has one central and four outer stagnation 
points. All five eddies rotate in the same direction as the tank. No effort has been made to identify 
the conspicuous case of five central stagnation points coalescing into one, as is observed 
experimentally. Another case consisting of nine stagnation points is shown in Figure 8(c). The 
central eddy rotates in the direction opposite to the tank, unlike the previous case. 

CONCLUSION 

Low Reynolds number flows in regions of complex geometry can be easily computed with the 
use of the boundary element method. Even in cases of complex flow patterns, quadratic source 
distributions along straight panels yield accurate results provided element lengths are optimized 
near re-entrant boundaries and corners. 
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(4 
Figure 8. Streamline pattern for four barriers with (a) h/D = 02, (b) h/D = 0.25, (c) h/D = 0.3 

APPENDIX 

The expressions for the integrals appearing in U,, and Ifkij are 

ja*jlnlP-qlds(q)=J,, 

qln I p - q1 ds(q) = J ,  + aces PJ,, 
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q2 In Jp - qI ds(q) = J ,  + 2a cos p J 2  + a2 cos2 PJ,, 

-1nlp-qJds(q)= [ K , I ,  -K2(Z2 + a c o s ~ Z 1 ) ] / a s i n ~ ,  s” an, an 

j- q a l n  IP - 91 ds(q) = [ & ( I 2  + a cos P I , )  

I, 
anj an 

- K2(Z3 + 2a cos P I 2  + a’ cos2 BI1)]/a sin P, 
a 

q2dnlnIp-q1ds(q)= {K , ( I3  + 2 a c o s p I ,  + a 2 c o s 2 ~ 1 1 )  

- K ,  [I, + 3a cos /?I3 + a2(4 cos2 p - 1)Z2  + a3 C O S ~  p Z , ] } / a  sin p,  
where 

I ,  = t+b, I ,  = a sin P(ln b - In a), 

I ,  = a sin p ( h  - at+b sin p), I ,  = +a sin p(b2 - a2) ,  

J ,  = acos P(ln a - In b) + h(1n b - 1) + a$ sin p, 
J ,  = $(b2 ln b - a2 In a) - a(b2 - a2), 

J ,  = + [ ( h - a ~ o s p ) ~ ( l n b - $ ) +  ~ ~ ~ o s ~ P ( l n a - 3 )  

+ a2 sin’ p ( h  - a$ sin p) ] ,  
K ,  = a sin (a - p - y), K ,  = sin (a - y). 

The lengths a, b,  h and the angles a, 8, y and t+b are shown in Figure 9. The field point p and source 

Y 

-.. 
Figure 9. Evaluation of the integrals 
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point q are on the panels CD and AB respectively. No confusion between the angle II, and the 
stream function should arise. 
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